
1 of 18 050801

Introduction
Dallas Semiconductor’s DS1232 MicroMonitor chip is a highly integrated solution to add power-on reset
delay, a pushbutton reset controller, robust power failure monitoring, and watchdog timer functionality to
your microprocessor system with the addition of a single chip. The chip also offers both active and low reset
signals, and selectivity of the watchdog time out period and the voltage monitoring level. The high level of
integration reduces both the cost of implementation and the board space required. The chips are available in
several packages including 8-pin µSOP, SOIC, and DIP.

Advantages of Using a Dallas Semiconductor DS1232 MicroMonitor

Power-on Reset Delay Allows Board Resources to Stabilize Before Execution Begins
Precise control of a microcontroller’s reset pin is important at all times during the operation of a circuit.
Thus, it is imperative that the reset pin is controlled during both normal operation and during the power-up
time of the circuit. One common problem with many microprocessor circuits is that the microcontroller
begins execution before the memory and I/O resources available to it have a stable power supply. Some chips
require hundreds of milliseconds to reset themselves and ready for operation. If a microprocessor begins
execution within microseconds of a reset, it could be executing based on invalid input from the system
resources. This can be resolved by adding a power-on reset (POR) circuit that holds the microprocessor in
reset during the power-up sequence for 100s of milliseconds after a reset occurs. The DS1232 will hold a
microcontroller’s reset pin active for a minimum time of 250ms (typically 610 ms.) Additionally, it can
provide either an active high or active low reset, which makes it compatible with any microprocessor.

Pushbutton Reset Circuit Debounces a Momentary Switch and Provides a Solid Reset Pulse
Another common problem in microprocessor circuits is that a less than perfect reset signal causes the
microprocessor to reset several times, possibly executing some fragment of the initialization routine several
times before the reset finally stabilizes. In some circuits this is trivial. However, in other circuits this could
cause major system problems. The DS1232 has internal circuitry that debounces a push-button and provides
the system a clean reset signal. This eliminates the need to have both a separate power-on reset circuit and
pushbutton circuitry attached separately to the reset pin. Plus, the DS1232 will hold the reset pin low for at
least 250 ms to guarantee that the manual reset is received correctly by the microprocessor every time.

The DS1232 Provides Power Failure Monitoring
Brownouts and power failures are a reality for most microprocessor systems. Since there is no way to avoid
the occasional power cycle, a robust microprocessor solution must account for the various power failure
modes. The DS1232 monitors the power supply to a microprocessor and forces the microprocessor into its
reset state if there is a brownout or if the power fails altogether. This guarantees that the system will not try
to operate during irregular supply voltage conditions, and it can prevent the microprocessor from executing
code when it should really be waiting for the supply voltage to return to a valid state.

Application Note 144
Advantages of Using a MicroMonitor and a Simple

Application Demonstrating the Use of a DS1232
www.dalsemi.com

APPLICATION NOTE 144

2 of 18 050801

An Internal Watchdog Timer MAY Reset A Microprocessor, but an External Watchdog WILL Reset
It
Watchdog timers are used to ensure that if the code operating on a microprocessor enters into an
unanticipated state, then the processor will reset after some minimal amount of time elapses. Many
microprocessors have an internal watchdog timer that handles this function without an external component.
However, the internal watchdog timer can be disabled by the pseudo-random code that is executing on the
microprocessor. The external watchdog timer on the DS1232 cannot be disabled. This gives you peace of
mind, knowing that if the MicroMonitor is not strobed, then the microcontroller will be reset. Another nice
feature of the DS1232 is that the strobe period can be varied to one of three different values. The device thus
works well with faster and slower microprocessors because you can program the watchdog timer to an
appropriate rate for any microcontroller. Another advantage of the external watchdog timer is that the strobe
signal is visible to the external world because it is on an I/O pin. This allows easier debugging of watchdog-
related problems.

Hardware Required for Using a DS1232 with a Microcontroller
The greatest asset of the DS1232 is that all of the functions listed above are implemented in a single package.
This functionality does not require a complex chipset. The schematic below shows how the DS1232 is used
with a Dallas Semiconductor DS87C520 Microcontroller. Since most systems incorporate a pushbutton reset,
the only things added are the DS1232, a pull-up resistor for the active low output, and a decoupling capacitor
to reduce the possibility of noise on the power supply causing a reset. The pull-up resistor is added here
because it is used to generate the oscilloscope plots shown on the following pages. The RST output of the
DS1232 is not required by the DS87C520. The LEDs on the diagram are used to signal when ISRs (Interrupt
Service Requests) are being serviced.

Figure 1.An 8051 Compatible Circuit Using the DS1232 as a Reset Controller

Using the DS1232 with a Microcontroller
Once the hardware has been configured, the DS1232 begins controlling the reset signals for power-up,
pushbutton reset, power failure reset, and watchdog timer reset. The active high (RST) and active low (RST)
power-on resets (POR) are shown in Figures 2 and 3, respectively. The active high reset signal rises with VCC

and remains high between 250 ms and 1 second. The active low reset remains 0V until the delay elapses and
then is pulled high by the pull-up resistor. The pull-up resistor is required because RST is an open collector
output. In the examples below, both RST and RST require about 450 ms to become inactive.

APPLICATION NOTE 144

3 of 18 050801

Figure 2. Typical RST Signal During Power-up Sequence: 1) VCC 2) RST

Figure 3. Typical RST Signal During Power-up Sequence: 1) VCC 2) RST

After the reset signal becomes inactive, the microcontroller must strobe the ST signal low before the
watchdog timer elapses. The DS1232’s watchdog timer cannot be disabled, so this must occur within n ms of
the reset signals becoming inactive, or the microprocessor will be reset. The watchdog time-out values for
the DS1232 are programmable and specified with somewhat wide ranges. However, it is best to strobe the
ST pin faster than the minimum watchdog time-out specification, because it eliminates the chance that a fast
watchdog will cause the system to erroneously reset. The watchdog time-out can be set to one of three values
by adjusting the value of the TD pin according to Table 1 on the next page.

APPLICATION NOTE 144

4 of 18 050801

Table 1. Watchdog Time-out Values for Each TD Pin State

TD Pin State
Minimum
Time-Out

Typical
Time-Out

Maximum
Time-Out

Ground 62.5 ms 150 ms 250 ms
Floating 250 ms 600 ms 1000 ms

VCC 500 ms 1200 ms 2000 ms

Figure 1 shows the TD pin grounded, and hence ST must see a negative edge every 62.5ms to guarantee that
the microprocessor will not be reset. If it is strobed at the typical rate of 150 ms, there is a chance that it
would work with one MicroMonitor but not another. The inclusion of the minimum, typical and maximum
values informs the end user of the behavior of the watchdog. Program the TD such that the microprocessor
can strobe the ST pin before it reaches the minimum time-out and plan on it taking as long as the maximum
time-out to reset the microcontroller. The typical value does not apply to any specific MicroMonitor; it
simply shows that the critical time is between the minimum and maximum time-out value. Thus, the typical
value for any given MicroMonitor could range anywhere between the minimum and maximum time-out
values.

Figure 4 (below) shows the strobe signal that was used for the same hardware setup. Trace # 1 shows VCC and
#2 shows ST. As the same hardware was used with the reset signals shown in Figures 2 and 3, the reset was
de-asserted at ~460ms. The first negative edge of the strobe signal occurs at 496 ms, or 36 ms after reset
becomes inactive. This is sufficiently early to guarantee that the watchdog will not reset the system unless the
microcontroller enters an unanticipated state.

Figure 4. Watchdog Strobe Signal (ST) at the Beginning of Execution: 1)VCC 2) ST

APPLICATION NOTE 144

5 of 18 050801

Figure 5. Zoom Showing Frequence of the ST signal: 1)VCC 2) ST

As you can see from Figure 5, the ST signal receives a negative-edge approximately every 20 ms. With a
faster microprocessor, there is not reason not to strobe more often than required. Also, on this graph it is easy
to see that the strobes start to occur at 496 ms after the voltage is applied.

The DS1232 will also debounce a momentary switch without additional hardware, making it easy to add a
pushbutton reset to over-ride the system. The pushbutton is shown in Figure 1, and the RST and RST signals
it causes are shown in Figures 6 and 7. Note that the pushbutton does not bounce when connected to the
DS1232 and that the reset is held for approximately the same period of time as a reset during power-up (610
ms typically). Also note that a pull-up resistor is not required for the pushbutton, because an internal pull-up
resistor is available within the DS1232.

Figure 6. Pushbutton Causing Reset without Bouncing: 1) PBRST 2) RST

APPLICATION NOTE 144

6 of 18 050801

Figure 7. Pushbutton Causing Reset without Bouncing: 1) PBRST 2) RST

The DS1232 also contains a power failure monitor. The DS1232 monitors VCC at all times and resets the
microcontroller if the voltage drops below VCCTP (VCC trip point). VCCTP can be programmed to 5% or 10%
below VCC, and the MicroMonitor will hold the reset signals active for 250 ms to 1 second after VCC recovers
and returns above VCCTP. VCCTP is programmed with the TOL pin. If the TOL pin is grounded, a 5%
tolerance is selected; if it is tied to VCC, then a 10% tolerance is selected. This allows designers to select the
tolerance that works best for their systems, allowing maximum flexibility of design. The 5% tolerance forces
a reset somewhere between 4.50V and 4.74V, and the 10% tolerance forces the reset pins active between
4.25V and 4.49V.

For the reference design shown in Figure 1, the 5% tolerance was chosen. Looking at the oscilloscope plot in
figure 8, VCCTP for this specific MicroMonitor can be determined. X2 on the plot is lined up with the edge of
RST and the cross point Y2 is at 4.6V.

The skew rate of VCC when falling is ~500mv/ 10 ms or ~50V/s. The DS1232 datasheet specification
requires the fall time between 4.75V to 4.25V to be greater than or equal to 300 µs, giving a maximum slew
rate of 1.667kV/s. As you can see, this is easily met by this power system.

APPLICATION NOTE 144

7 of 18 050801

Figure 8. RST Pin Behavior When VCC Falls Below VCCTP: 1) VCC 2) RST

The next oscilloscope plot shows the power-up sequence as VCC leaves a “brownout” condition. VCC has
been static at 4.3V, and it will return to 5.0V. The DS1232 will hold the reset active for the reset active time
of 250ms to 1 second after the transition occurs on VCC. In the case below, the MicroMonitor held the reset
active for approximately 460 ms.

Figure 9. Voltage Recovers from 4.3V “Brownout”: 1) VCC 2) RST

8051 Microcontroller Software for Using a DS1232 MicroMonitor Chip
Software designed to work with the hardware of Figure 1 is provided in Appendix A. The software works
with a DS1232 MicroMonitor and a Dallas Semiconductor DS87C520 8051-compatible microcontroller. It
provides a robust power and code monitoring system with redundant power and code monitoring. The

APPLICATION NOTE 144

8 of 18 050801

software can distinguish between when the MicroMonitor resets the controller and when the microcontroller’s
internal POR or watchdog timer causes the reset.

This code is 100% event driven, and hence the main program is simply an infinite loop. The software takes
advantage of Dallas Semiconductor’s interrupt priority scheme and allows the interrupt hardware to service
first the internal power failure interrupt (non- maskable), then the internal watchdog interrupt, and finally the
timer 0 interrupt, which is used to strobe the external watchdog on the DS1232. The redundancy provided by
using both the internal and external power and code monitoring ensures that these critical functions are
performed without error.

Interrupt routines interact as shown in Figure 10 below.

Figure 10. Interrupt Interaction / Program Flow Diagram

Timer 0 is the lowest priority interrupt. Thus, it can be interrupted by either the Watchdog Interrupt (high
priority) or the Power-fail Interrupt (highest priority). If timer 0 is not interrupted, it will toggle the strobe pin
(ST) of the DS1232 every 10ms and toggle the heartbeat LED every 50 trips through the ISR (500ms). At the
end of its execution, it returns control to the main program.

If the timer ISR (Interrupt Service Routine) is interrupted by the watchdog and/or the power-fail interrupt,
then control is immediately transferred to the highest priority pending interrupt. If the watchdog timer
elapses, then the watchdog functions (listed on the diagram) are performed to completion, and then control
will either be transferred to the Power Fail Interrupt or back to the Timer 0 Interrupt, depending on if a
power-fail interrupt was received during the execution of the watchdog functions. If no power-fail interrupt

Main Progam
No Functions

Powerfail Interrupt
• Stobes (in/ex)ternal Watchdogs

every 1.7ms
• Waits For PFI flag to clear

before exiting
• Blinks LED1 ~1 / sec.

Timer 0 Interrupt
• Srobes external watchdog

every 20ms
• Blinks LED 1 / sec.

Watchdog Interrupt
• Disables nested interrupts
• Strobes internal watchdog
• Clears watchdog RST flag
• Blinks LED2 1/ interrupt
• Re-enables interrupts.

Key
Ø Interrupt can occur during current state.

Ø Interrupt cannot occur until the current interrupt is serviced.

Ø Interrupt returns to the interrupt it interrupted.

Ø No interrupts pending, return to main program.

APPLICATION NOTE 144

9 of 18 050801

was received, then the timer 0 interrupt will attempt to finish. If the timer 0 ISR is not further bothered by a
power-fail interrupt, it will complete and return to the main program. If timer 0 is interrupted by the power-
fail interrupt, it will allow the power fail interrupt to occur first.

If the power-fail interrupt does occur, control is transferred to it, and the ISR executes until the voltage level
of VCC returns above the DS87C520s early voltage failure warning level. Since this ISR has the highest
priority, it cannot be interrupted by the watchdog interrupt or the timer 0 interrupt. This means that the
powerfail ISR must strobe both the internal and external watchdogs, or the watchdogs will reset the part when
the voltage sags. In reality, this most likely will not occur because the DS1232 is set to a tighter tolerance
than the internal voltage monitor on the microcontroller, and hence the DS1232 would reset the
microcontroller before the microcontroller’s early voltage failure warning level would be reached. Restated
another way, the internal voltage monitoring of the DS87C520 will probably never be used and is a redundant
function on this system. The interrupt only occurs in the event that the DS1232 fails. Since the DS1232 is a
reliable part, you may be waiting a while if you try to test this condition.

When the power-fail interrupt completes, the next highest pending ISR is serviced. Thus, if the watchdog
interrupt occurred during the service of the power-fail interrupt, then it would be serviced first. When it
completed, the timer 0 ISR would attempt to finish.

Each interrupt strobes a separate LED, indicating which ISR is currently being service routinely.

If redundancy is not required for a specific application, the power-fail and watchdog ISRs can be removed.
Removing them will also require you to change the vector jump table at the beginning of the program. It is
recommended that you place start in the place of all unused vector addresses. The code that initializes and
enables the power-fail and the watchdog interrupts in the MainInit routine also needs to be removed. This
will leave you with only the timer 0 ISR, the reset detect routine, an empty main program, and the supporting
functions for the serial port. A good start for any 8051 application!

Dallas Semiconductor Contact Information

Address:
4401 S. Beltwood Parkway
Dallas, TX 75244
Tel: 972-371-4448
Fax: 972-371-4799

Product Literature:
(972) 371-4448

Sales and Customer Service:
(972) 371-4969

World Wide Web Site:
www.dalsemi.com

Ordering Information:
www.dalsemi.com/products/ordering.pdf

FTP Site:
ftp://ftp.dalsemi.com

Datasheets:
www.dalsemi.com/datasheets/pdfindex.html

Package/Mechanical Drawings:
www.dalsemi.com/datasheets/mechdwg.html

APPLICATION NOTE 144

10 of 18 050801

Appendix A – DS87C520 Code For Supporting DS1232 MicroMonitor
;***
;* DS87C520 APPS DEVELOMENT SYSTEM *
;* *
;* Application: *
;* *
;* This program was created to demonstrate using a DS1232 for its *
;* power on reset, system power monitoring, pushbutton reset *
;* controller, and watchdog timer. A DS1075 running at 22.2MHz *
;* clocks the system, the and serial port is used to relay status *
;* messages for testing. *
;***
;* Software Revision History *
;* *
;* 1.0 03/21/01 - power management with a DS1232. *
;* *
;* Hardware Description *
;* *
;* P1.0 - LED1 P0.0 - SN74F373N *
;* P1.1 - LED2 P0.1 - " *
;* P1.2 - RXD1 to PC P0.2 - " *
;* P1.3 - TXD1 to PC P0.3 - " *
;* P1.4 - P0.4 - " *
;* P1.5 - P0.5 - " *
;* P1.6 - P0.6 - " *
;* P1.7 - P0.7 - " *
;* *
;* P3.0 - RXD0, Not used P2.0 - Upper *
;* P3.1 - TXD0, Not used P2.1 - Address *
;* P3.2 - P2.2 - Byte *
;* P3.3 - P2.3 - " *
;* P3.4 - ST DS1232 P2.4 - " *
;* P3.5 - LED P2.5 - " *
;* P3.6 - WR\ P2.6 - " *
;* P3.7 - RD\ P2.7 - " *
;* *
;* R0 - Used for HeartBeat in timer0 interrupt. Do Not Destroy! *
;* R5-R7 - Used for wt routine in non-interrupt functions *
;* Do not DESTROY! *
;* *
;* Window 0 = Main Program Execution *
;* Window 3 = Interrupt Execution *
;***

APPLICATION NOTE 144

11 of 18 050801

$include (c:\firmware\reg520.inc) ; SFR register defs for compiler

;************* Variable Declarations *************
;** General Variables **
stack equ 02Fh ; bottom of stack
 ; stack starts at 30h

;************* SFR Declarations *************
;** General SFR Names **
smod_1 equ 0DFh ; buad rate doubler bit declared

;** Port 1 Signal Names **
LED1 equ 90h ; P1.0 is LED1
LED2 equ 91h ; P1.1 is LED2
RX1 equ 92h ; P1.2 is Serial Port 1 RX
TX1 equ 93h ; P1.3 is Serial Port 1 TX

;** Port 3 Signal Names **
ST equ 0B4h ; P3.4 is Watchdog Strobe
LED equ 0B5h ; P3.5 is LED Indicator

;***
;* Hardware Interrupt Vectors (Table on page 95 of DS databook) *
;***

 org 0000h ; Power up and Reset, main program
 ljmp start
 org 0003h ; External Interrupt 0
 ljmp start
 org 000Bh ; Timer 0 Interrupt
 ljmp tmr0_interrupt
 org 0013h ; External Interrupt 1
 ljmp start
 org 001Bh ; Timer 1 Interrupt
 ljmp start
 org 0023h ; Serial Port 0 Interrupt
 ljmp start
 org 002Bh ; Timer 2 Interrupt
 ljmp start
 org 0033h ; PowerFail Interrupt (DS Priority 1)
 ljmp pf_interrupt
 org 003Bh ; Serial Port 1 Interrupt (DALLAS)
 ljmp start
 org 0043h ; External Interrupt 2 (DALLAS)
 ljmp start
 org 004Bh ; External Interrupt 3 (DALLAS)
 ljmp start
 org 0053h ; External Interrupt 4 (DALLAS)
 ljmp start
 org 005Bh ; External Interrupt 5 (DALLAS)
 ljmp start
 org 0063h ; Watchdog Interrupt (DALLAS)
 ljmp wd_interrupt
 org 006Bh ; Real-Time Clock (DALLAS)
 ljmp start

APPLICATION NOTE 144

12 of 18 050801

;***
;**** Main Program ****
;**** This program detects the cause of the last reset, then ****
;**** blinks LED while the DS87C520(8051) strobes both the ****
;**** internal and external watchdog timers to keep the watch- ****
;**** dogs from resetting the part. ****
;***
 org 0080h;
start:
 ;Code Between start and ASMMain executes after reset only

 clr EA ; Disable Interrupts
 lcall MainInit ; Initialize Main Program

 ;Place Application Specific Startup Code Here!!!

ASMMain:

 ; Insert Your Application Here! Note: Timing in this interrupt
 ; environment will be interrupted every 10ms by timer 0, and every
 ; 2^17 clock cycles by the watchdog interrupt. Thus, application
 ; timing may not be like expected. If timing requirements
 ; are critical, the timer 0 interrupt can be modified to allow
 ; simple events to occur on multiples 10ms, but even those events
 ; will occasionally be briefly interrupted by the WD interrupt.

 sjmp ASMMain ; Infinite Loop Main Program Does Nothing
 ; But Wait For Events to Trigger Interrupts

;***
;**** Main Initialization Routine ****
;**** Initializes Serial Port 1, Timer 1 and 0, Enables the ****
;**** Power Fail Interrupt, Enables Timer 0 Interrupt, ****
;**** Turns on Global Interrupt Enable, Detects Last Rest ****
;**** Cause, Displays Welcome Message on POR ****
;***
;* requires outstr routine *
;* destroys registers A, DPL, DPH, R5, R6, and R7 *
;***
MainInit:
 lcall initSP1 ; Initialize Ser Port 1 & Timer 1/0
 mov R2, #0 ; clear R2 for heartbeat
 setb EPFI ; Enable Power Fail Interrupt
 mov IE, #02h ; Enable Timer 0 Interrupt.
 mov TA, #0AAh ; Timed Access Write
 mov TA, #55h ; " "
 setb EWT ; Enable Watchdog Reset
 setb PWDI ; Give Watchdog Priority Over Timer 0
 setb EWDI ; Enable Watchdog Interrupt
 setb EA ; Turn On Global Interrupt Enable

 lcall reset_detect ; Determines Reset Cause
 cjne A, #0, Main_Init_End ; If POR, Display Welcome Message
 lcall intro ; Welcome Message, Serial Port 1
Main_Init_End:
 ret

APPLICATION NOTE 144

13 of 18 050801

;***
;**** Timer 0 Interrupt ****
;**** Selects Reg Window 3, Reset Timer 0 High Register to ****
;**** B8h (forces interrupt to occur every 9.96ms), beats ****
;**** LED every 50 interrupt occurrences, toggles ST every ****
;**** occurrence ****
;***
;* requires no routines, R0 Window 3 is heartbeat counter *
;***
tmr0_interrupt:
 orl PSW, #18h ; select register window 3
 mov TH0, #0B8h ; force overflow every 10ms
 inc R0 ; inc. heartbeat (hb) counter
 cjne R0, #50, tmro_interrupt_end ; if hb counter = 50 then beat
 cpl LED ; beat code, P3.5 = hb LED
 mov R0, #0 ; reset hb counter
tmro_interrupt_end:
 cpl ST ; Complement Strobe Pin (ST)
 ; Done each tmr0 interrupt pass
 ; Neg Edge every 20 ms

 anl PSW, #0E7h ; reselect register window 0
 reti ; Interrupt Return

;***
;**** Watchdog Timer Interrupt ****
;**** Called when watchdog timer elapses every 2^17cc. Resets ****
;**** the timer by a timed access write to RWT ****
;***
;* requires no routines or registers. *
;***
wd_interrupt:
 clr EA ; Turns Off Global Interrupt Enable,
 ; Disables Nested Interrupts, prohibits PF
 ; interrupt from stopping internal WD strobe.
 mov TA, #0AAh ; Timed Access Write
 mov TA, #55h ;
 setb RWT ; Reset Watchdog Timer
 mov TA, #0AAh ; Timed Access Write
 mov TA, #55h ;
 clr WDIF ; Clear Watchdog Interrupt Flag
 cpl LED2 ; Complement P1.2 every time interrupt is
 ; serviced.
 setb EA ; Turns On Global Interrupt Enable
 reti

APPLICATION NOTE 144

14 of 18 050801

;***
;**** Power Fail Interrupt ****
;**** Writes informative message, waits 500ms, attempts to ****
;**** return to normal operation if power not reset. ****
;***
;* requires outstr routine *
;* destroys registers A, R5, R6, and R7 *
;***
pf_interrupt:
 orl PSW, #18h ; selects register window 3
 mov TA, #0AAh ; timed access write
 mov TA, #55h ; " "
 setb RWT ; Reset Internal Watchdog Timer
 cpl ST ; Complement ST, strobe every other
 ; time the instruction is hit.

 ; provide system specific code required incase a brownout or
 ; or total power failure!

wait_powerup:
 clr PFI ; clear pf interrupt status flag
 mov R5, #128 ; set regs for wait function
 mov R6, #1 ; to provide 1.7 ms delay
 mov R7, #1 ; " "
 lcall wt ; call delay function
 mov TA, #0AAh ; timed access write
 mov TA, #55h ; " "
 setb RWT ; Reset Watchdog Timer
 cpl ST ; Complement ST, strobe every other
 ; time the instruction is hit.
 inc R0 ; Increment reset counter
 cjne R0, #0, wait_powerup ; complement LED1 Every 256 resets
 cpl LED1 ; complement P1.0
 jb PFI, wait_powerup ; If pf interrupt flag still set
 ; remain in interrupt.

 ANL PSW, #0E7h ; reselect register window 0
 reti ; into the pf interrupt

APPLICATION NOTE 144

15 of 18 050801

;***
;**** reset_detect ****
;**** Checks reset status flags to determine what the cause ****
;**** of the latest reset was. Can execute reset type ****
;**** specific code if desired. Does not check for WD rst. ****
;***
;* requires outstr routine *
;* destroys registers DTRP, A, R5, R6, and R7 *
;***
reset_detect:
 jb POR, reset_por ; if por reset detected, elseif
 jb WDRF, reset_wd ; wd reset detected, else

 mov DPTR, #mess_DS1232_reset ; point to DS1232 reset message
 lcall outstr ; send reset message
 mov A, #1 ; set reset type flag

 ; insert code for non internal WD/POR reset here

 sjmp end_reset_detect ; Goto end of routine, clear
 ; POR and WD reset flags.
reset_wd:
 mov DPTR, #mess_wd ; point to wd reset message
 lcall outstr ; send reset message
 mov A, #1 ; set reset type flag

 ; insert code for internal watchdog reset

 sjmp end_reset_detect ; Goto end of routine, clear
 ; POR and WD reset flags.

reset_por:
 mov DPTR, #mess_por ; point to por reset message
 lcall outstr ; send reset message
 mov A, #0 ; set reset type flag

 ; insert POR reset specific code here

end_reset_detect:
 mov TA, #0AAh ; Timed Access Write
 mov TA, #55h ; " "
 clr WDRF ; Clear WD reset flag
 mov TA, #0AAh ; Timed Access Write
 mov TA, #55h ; " "
 clr POR ; Clear POR reset flag
 ret

APPLICATION NOTE 144

16 of 18 050801

;***
;**** Initialize Serial Port 1 for PC interface ****
;**** Set up serial port 1 for use with a 22.1 MHz crystal ****
;**** Uses timer 1 for 19200 baud, Mode 1 ****
;***
;* Uses no other routines or registers *
;***
initSP1:
 setb smod_1 ;enable baud rate doubler
 mov SCON1, #50h ;Serial Port 0 asynch, 10 bits
 mov TMOD,#21H ;MSB-T1 on and in 8bit auto-load-mode
 ;LSB-T0 on and in 16-bit count mode
 ; T0 is free running 2^16cc
 ; overflow rate (35.59ms)
 mov TCON, #50H ;t1/0 enabled, not using ext int
 ; edge/level select and detect
 ; flag/reg
 mov TH1, #0FAH ;set t1 reset val / baud rate=19200
 ret

;***
;**** Intro Display Message Routine ****
;**** Sends out a greeting message ****
;***
;* Uses outstr function *
;* Destroys DPTR *
;***
intro: mov DPTR, #mess_welcome ;send welcome message
 lcall outstr
 mov DPTR, #mess_ret ;send (2) CR and (2) LF
 lcall outstr
 mov dptr, #mess_app ;send application specific message

 lcall outstr
 mov DPTR, #mess_ret ;send (2) CR and (2) LF
 lcall outstr
 ret

;***
;**** Outstring Routine - Serial Port 1 ****
;**** writes a null terminated string to PC via Ser. Port 1 ****
;***
;* Uses outchar routine *
;* Destroys dptr and A *
;***
outstr: clr A ; clear A to get data
 movc A,@A+DPTR ; get data from string at data pointer
 jz exitstr ; if data zero, eos
 lcall outchar ; else send character
 inc dptr ; increment data pointer
 sjmp outstr ; continue, zero condition will terminate
exitstr:

 ret

APPLICATION NOTE 144

17 of 18 050801

;***
;**** Outchar routine - Serial Port 1 ****
;**** writes character in Acc to the PC via serial port 1 ****
;***
;* Uses no routines or registers *
;***
outchar:
 mov SBUF1,A ; place A into Serial Port 1 Buffer
waitchar:
 jnb SCON1.1, waitchar ; wait buffer empty flag is set
 clr SCON1.1 ; clear buffer empty flag
 ret

;***
;**** General Wait Function ****
;**** Can wait anywhere between 14.42us to 221 sec. ****
;**** Waits R7 * 867.6 ms if R5 = R6 = 255 ****
;**** Waits R6 * 3.4 ms if R5 = 255 and R7 = 1 ****
;**** Waits R5 * 13.34us if R6 = R7 = 1 ****
;***
;* requires WriteBits3 routine *
;* destroys R2 and A registers *
;***
wt:
 lcall wait16us ; 12.8us of waits
 lcall wait16us
 lcall wait16us
 lcall wait16us
 lcall wait16us
 lcall wait16us
 lcall wait16us
 lcall wait16us
 djnz R5, wt ;3.4ms if R5=255, R6 = R7 = 1
 djnz R6, wt ;867.6ms if R5=255 and R7=1
 djnz R7, wt ;R7*867.6ms if R5 = R6 = 255
 ret

;***
;**** Wait 1.6 us Function ****
;**** Wastes 1.6us of processor time with call, nop and return ****
;***
;* Requires no other routines or registers *
;***
wait16us:
 nop ; 1 nops @4cc each + lcall @16cc + ret @16cc
 ; produces approximately 1.6us of delay with a
 ; 22.22MHz clock
 ret

APPLICATION NOTE 144

18 of 18 050801

;***
;**** MESSAGES ****
;***

mess_welcome:
 db ' Jason''s Proto-board, Rev. 0.2',0Dh,0Ah
 db ' Now uses DS1075 for a clock, DS1267 for a 3-Wire Demo,'
 db 0Dh,0Ah
 db ' and a DS1803 for a 2-Wire Demo., and a DS1232 for',0Dh,0Ah
 db ' power management.',0

mess_ret:
 db 0Dh,0Ah,0DH,0AH,0

mess_app:
 db ' This program demonstrates using a DS1232 MicroMonitor and'
 db 0Dh, 0Ah
 db ' interrupts to provide robust power management, and event'
 db 0Dh, 0Ah
 db ' event handling',0

mess_wd:
 db 'Internal Watchdog Reset',0Dh,0Ah,0
mess_por:
 db 'POR reset', 0Dh, 0Ah, 0
mess_DS1232_reset:
 db 'DS1232 Reset (PushButton/Power Failure/External Watchdog)'
 db 0Dh,0Ah,0

 END ;End of program

